Pt100, Pt1000 or NTC ? which is the right sensor?

Especially Insane -building industry often asks me which is the proper measuring element for them. This is the reason why I wish to explain in the following paragraphs the differences between the mostly used sensors Pt100, Pt1000 and NTC. I’ll go into greater detail about the lesser-used measuring elements Ni1000 and KTY sensors in the comparison at the end of this article.
Application areas of Pt100, Pt1000 and NTC
Resistance thermometers based on Pt100, Pt1000 (positive temperature coefficient PTC) and NTC (negative temperature coefficient) are used all around the industrial temperature measurement where low to medium temperatures are measured. In the process industry, Pt100 and Pt1000 sensors are employed almost exclusively. In machine building, however, often an NTC can be used ? not least for cost reasons. Since meanwhile the Pt100 and Pt1000 sensors are manufactured in thin-film technology, the platinum content could be reduced to the very least. As a result, the purchase price difference compared to the NTC could be reduced to such an extent that a changeover from NTC to Pt100 or Pt1000 becomes interesting for medium quantities. Particularly since platinum measuring resistors offer significant advantages over negative temperature coefficients.
Advantages and disadvantages of the various sensors
The platinum elements Pt100 and Pt1000 provide advantage of meeting international standards (IEC 751 / DIN EN 60 751). Due to material- and production-specific criteria, a standardisation of semiconductor elements such as NTC isn’t possible. That is why their interchange ability is limited. Further benefits of platinum elements are: better long-term stability and better behaviour over temperature cycles, a wider temperature range in addition to a high measurement accuracy and linearity. High measurement accuracy and linearity may also be possible having an NTC, but only in a very limited temperature range. While Pt100 and Pt1000 sensors in thin-film technology are suitable for temperatures around 500�C, the standard NTC may be used for temperatures up to approx. 150�C.
Influence of the supply line on the measured value
The lead resistance affects the measurement value of 2-wire temperature sensors and should be considered. For copper cable with a cross-section of 0.22 mm2, the next guide value applies: 0.162 ?/m ? 0.42 �C/m for Pt100. Alternatively, a version with Pt1000 sensor can be chosen, with that your influence of the supply line (at 0.04 �C/m) is smaller by a factor of 10. The influence of the lead resistance when compared to base resistance R25 for an NTC measuring element is far less noticeable. As a result of sloping characteristic curve of the NTC, the influence at higher temperatures increases disproportionately in case of higher temperatures.
Conclusion
In case of high quantities, the usage of NTC sensors is still justified because of cost reasons. For small to medim-sized lots, I would recommend the use of a platinum measuring resistor. The use of a Pt1000 stated in thin-film technology is really a perfect compromise between the costs on the one hand and the measurement accuracy on another. In the next table, I’ve compiled the strengths and weaknesses of the various measuring elements within an overview for you:
Strengths and weaknesses of different sensors
NTC
Pt100
PT1000
Ni1000
KTY
Temperature range
?
++
++
+
?
Accuracy
?
++
++
+
?
Linearity
?
++
++
+
++
Long-term stability
+
++
++
++
+
International standards
?
++
++
+
?
Temperature sensitivity (dR/dT)
++
?
+
+
+
Influence of the supply line
++
?
+
+
+
Characteristic curves of Pt100, Pt1000, NTC, KTY and Ni1000
The characteristic curves of the various measuring elements is seen in the next overview:
Characteristic curves of the various sensors
Note
Our temperature sensors for the machine-building industry can be found with all common measuring elements. More info can be found on the WIKA website.
Find out more about the functionality of resistance thermometers with Pt100 and Pt1000 sensors in the following video:

Leave a Comment